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There is a growing interest in adopting image-based phenotypic profiling for target and drug discovery processes. Much of the growth has been driven by the use of Cell Painting, a standardized high content profiling method 
originally developed at the Broad Institute. The JUMP (Joint Undertaking in Morphological Profiling) Cell Painting (CP) consortium has been established to generate a large public reference Cell Painting dataset with the aim to 
create a new phenotypic approach to drug discovery. Here, we have focused on the preliminary JUMP CP dataset1, which includes A549 and U2OS cell lines treated with chemical and genetic (CRISPR and ORF) perturbations to 
explore the CellProfiler output features capturing the variability in this data. We show how our web-based data analytics platform, StratoMineR, can be used to evaluate phenotypic data holistically.
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Methods

Figure 2: The StratoMineRTM 

workflow. StratoMineRTM is a 
web-based platform which 
guides users through a typical 
workflow in analysis of high 
content multi-parametric data3. 
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Figure 3: Using the StratoMineR™ Quality Control interactive data visualization module, we can quickly get an 
overview of the entire preliminary JUMP-CP dataset. We used the merged metadata module to combine an 
annotation file with the raw data, this supports inclusion of details about the experiment (compound names, time 
points, reagent classes, etc) which results in more plotting options. For example, here the data points are labeled by 
reagent class and the data is tiled by perturbation type: Compound, CRISPR or ORF.

Figure 1: The Cell Painting Assay and the JUMP-CP Pilot 
experimental parameters. The cells were fixed and the standard 
Cell Painting assay protocol with six fluorescent dyes2 were 
used to label various components of the cell. Segmentation and 
feature extraction was performed using CellProfiler.  

Cell Lines: A549, U2OS
Plates: 51,  Replicates:  2-5
Gene Targets:  175+
Time Points:  1, 2, 4, 14, 28 days
Treatments: Compounds (306), CRISPR sgRNAs (335), 
ORFs (175) 
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Dimensionality reduction

Component 1 Component 2 Component 3

Feature Loading Feature Loading Feature Loading

NucleiIntensityMaxIntensityEdgeER 0.950 CellsIntensityMeanIntensityEdgeBrightfield 1.000 NucleiIntensityStdIntensityEdgeBrightfield 0.776

NucleiIntensityStdIntensityEdgeER 0.925 CellsIntensityMeanIntensityEdgeHighZBF 0.999 CellsIntensityMaxIntensityHighZBF 0.753

CellsIntensityMaxIntensityER 0.910 CellsIntensityMeanIntensityLowZBF 0.997 CellsIntensityStdIntensityBrightfield 0.753

NucleiIntensityMaxIntensityER 0.900 CellsIntensityMeanIntensityBrightfield 0.997 NucleiIntensityMassDisplacementBrightfield 0.740

NucleiIntensityStdIntensityEdgeAGP 0.859 CellsIntensityUpperQuartileIntensityBrightfield 0.997 CellsIntensityMaxIntensityBrightfield 0.738

Component 1 Component 2 Component 3

Feature Loading Feature Loading Feature Loading

CellsAreaShapeExtent -0.902 NucleiAreaShapeZernike55 0.886 NucleiAreaShapeMinFeretDiameter 0.982

CellsAreaShapeZernike00 -0.882 NucleiAreaShapeZernike77 0.858 NucleiAreaShapeEquivalentDiameter 0.960

CellsAreaShapeSolidity -0.876 NucleiAreaShapeZernike75 0.840 NucleiAreaShapeMaximumRadius 0.958

CellsAreaShapeZernike95 0.872 NucleiAreaShapeZernike33 0.807 NucleiAreaShapePerimeter 0.948

CellsAreaShapeZernike31 0.845 NucleiAreaShapeZernike71 0.803 NucleiAreaShapeArea 0.945

Intensity Features

Morphology Features

Component 1 Component 2 Component 3

Feature Loading Feature Loading Feature Loading

CellsTextureSumVarianceBrightfield300256 1.028 NucleiTextureCorrelationDNA1003256 -0.801 CellsTextureAngularSecondMomentER1000256 1.022

CellsTextureSumVarianceBrightfield301256 1.021 NucleiTextureInfoMeas1DNA1001256 -0.799 CellsTextureAngularSecondMomentER1001256 1.019

CellsTextureSumVarianceHighZBF301256 1.012 NucleiTextureCorrelationDNA1001256 -0.793 CellsTextureAngularSecondMomentER1002256 1.018

CellsTextureSumVarianceBrightfield302256 1.010 NucleiTextureCorrelationDNA1002256 -0.792 CellsTextureAngularSecondMomentER1003256 1.016

CellsTextureSumVarianceBrightfield500256 1.010 NucleiTextureInfoMeas1DNA1003256 -0.788 CellsTextureDifferenceVarianceER1000256 1.009

Texture Features

Feature Closest Feature Correlation Value

CellsAreaShapeBoundingBoxArea CytoplasmAreaShapeBoundingBoxArea 1

CellsAreaShapeBoundingBoxMaximumX CytoplasmAreaShapeBoundingBoxMaximumX 1

CellsAreaShapeBoundingBoxMaximumY CytoplasmAreaShapeBoundingBoxMaximumY 1

CellsAreaShapeBoundingBoxMinimumY CytoplasmAreaShapeBoundingBoxMinimumY 1

CellsAreaShapeBoundingBoxMinimumX CytoplasmAreaShapeBoundingBoxMinimumX 1

CellsAreaShapeMinFeretDiameter CytoplasmAreaShapeMinFeretDiameter 1

CellsAreaShapeMaxFeretDiameter CytoplasmAreaShapeMaxFeretDiameter 1

CellsAreaShapeCenterY CytoplasmAreaShapeCenterY 1

CellsAreaShapeCenterX CytoplasmAreaShapeCenterX 1

CellsAreaShapeMajorAxisLength CytoplasmAreaShapeMajorAxisLength 0.999

Hit selection & Clustering Analyses

Figure 4:  Feature selection with Morphology features in the preliminary JUMP-CP dataset. The correlation matrix 
shows only 250 features, and the table lists the top 10 features with the highest correlation values with their closest 
feature, indicating redundancy. The same method was applied for every feature category. 

Feature Selection
One of the biggest barriers to analyzing the JUMP CP data is the vast amount of features; (5792 in the pilot 
experiments). Due to our collaboration with KML Vision (poster number: 1095-B), we were interested in 
understanding which features contributed the most variance within this data set. Therefore, we grouped the features 
into the CellProfiler measurement categories: Morphology (AreaShape), Intensity, Texture, Granularity, Correlation, 
Radial Distribution, Location, Neighbor, Parent and Children. We then performed Feature Selection on these 
different categories independently. We used Spearman's correlation to understand which features were highly 
correlated with each other. We performed further downstream analysis which included: plate normalization to the 
median of the negative control, data transformation to handle skewed features, and feature scaling to normalize the 
numerical range of independent measurements

We applied Principal Component Analysis (PCA) on each feature category group based on the samples. We 
determined the number of components to calculate based on a Scree plot (between 8 and 10 components 
for most of the feature groups). Data reduction is useful for three critical reasons: 1) reduces computational 
load, 2) reduces redundancy, and 3) reveals the biology behind the data by highlighting important features. 
Using PCA allowed us to extract feature loading scores which can be subsequently used for making 
informed decisions on prioritization to create a smaller feature set. This was important for our collaboration 
with KML Vision, for supporting exploration of different features within their IKOSA AI platform4 for 
morphological cell profiling. 

Table 1:  Principal Component Analysis results.The five features with higher loadings within the first three 
components are shown. More features were significantly loading within the components (data not shown 
here). Morphology, Intensity and Texture features are shown here, the same analysis was performed for the 
other feature groups. Please contact us for more information. 
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Compound Target Time

ponatinib LYN 24

epothilone-b TUBB3 24

briciclib CCND1 24

ixabepilone TUBB4B 24

colchicine TUBB3 24

oxibendazole TUBB4B 24

azeliragon AGER 48

ponatinib LYN 48

puromycin RPL23A 48

GK921 TGM2 48

SU3327 MAPK8 48

LDN-212854 ABL1 48

A.

Figure 6:  Hit selection and clustering identified compounds with related and unrelated targets. 
Unsupervised hit selection using Euclidean distance scoring was used for a subset of data from 
compound-treated A549 experiment, and distance scores were calculated from the median of the 
negative controls with p < 0.05. This approach identified 57 compound hits that were phenotypically 
distinct from the negative controls.  Shown here is a hit selection scatter plot for A549 cell line (A) and 
selected hit compounds (inset) can be clustered based on 10 PCAs (B) or across 50 features (C).  List of 
selected hits from compound-treated A549 cells reveals groups of related and unrelated targets (D).
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Besides exploring the features and their importance within each category, we used the pilot data to make 
several phenotypic comparisons between two cell lines, and tracked phenotypic drift over various time points 
and conditions.
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